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In the evolutionary minority game, agents are allowed to evolve their strategies(“mutate”) based on past
experience. We explore the dependence of the system’s global behavior on the response time and the mutation
threshold of the agents. We find that the precise values of these parameters determine if the strategy distribution
of the population has aU shape, inverseU shape, orW shape. It is shown that in a free society(market), highly
adaptive agents(with short response times) perform best. In addition, “patient” agents(with high mutation
thresholds) outperform “nervous” ones.
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A problem of wide interest in biological and socioeco-
nomic systems is that of an evolving population in which
individual agents adapt their behavior according to past ex-
perience. The minority game(mg) is one of the most studied
models of such complex systems(see, e.g.,[1–20] and ref-
erences therein). In this model, a population ofN agents with
limited information and capabilities repeatedly compete for a
limited global resource, or to be in the minority. In financial
markets, for instance, more sellers than buyers implies lower
prices, and it is therefore better for a trader to be in a minor-
ity group of buyers. Predators foraging for food will do bet-
ter if they hunt in areas with fewer competitors. Rush-hour
drivers, facing the choice between two alternative routes,
wish to choose the route containing the minority of traffic
[1].

At each round of the game, every individual has to choose
whether to be in room 0(e.g., choosing to sell an asset or
taking route A) or in room 1(e.g., choosing to buy an asset
or taking route B). At the end of each turn, agents belonging
to the smaller group(the minority) are the winners, each
gaining one point(the “prize”), whereas the others lose a
point (the “fine”). The agents have a common “memory”
look-up table, containing the outcomes of recent occur-
rences. Faced with a given bit string of recent occurrences,
each agent chooses the outcome in the memory(the so-called
“predicted trend”) with probability p, known as the agent’s
“gene” value(and the opposite alternative with probability
1−p).

The evolutionary formulation of the model[evolutionary
minority game(EMG)] [5,15] allows agents to adapt their
strategy according to their past experience: if an agent score
falls below some valueD (the mutation threshold), he
mutates—its gene value is modified. In this sense, each agent
tries to learn from his past mistakes and to adjust his strategy
in order to survive.

In previous studies of the EMG, the criterion according to
which each agent decided whether or not to change his strat-
egy was based on his performance inall previous rounds of
the game, givingequalweights to each of these rounds. Such
a crude criterion lacks the capability of quantifying the “lo-
cal” performance of an agent(his net success in the last few
rounds of the game). It may therefore lead to situations in
which agents are taking the wrong decisions(based on the
state of the system in the far past) without noticing that the

system has already evolved into a completely different global
state. Thus, of great interest for the study of realistic systems
of competing(and evolving) agents are situations in which
agents are capable of adapting their strategy according to
their present(local) performance(rather than using a crude
criterion for mutation, one that gives equal weights to all
previous rounds of the game).

The aim of the present work is to explore the dynamics of
evolving populations with various levels of adaptation(vari-
ous response times, see a precise definition below) and with
different values of the mutation threshold. Of main impor-
tance is the identification of the strategies that perform best
in a particular situation.

In the present formulation of the model, each agent holds
a measure of his past performance through a moving average
Sst ;Td, whose value reflects the payoffs from recentT rounds
of the game. The moving average is updated with each turn
of the game[21]:

Sst;Td =
T − 1

T
Sst − 1;Td +

1

T
Dstd, s1d

whereDstd= ±1 is the agent’s payoff at time stept. Thus, the
information about previous outcomes has a half-life of,T
turns [the contribution of a given turn toSst ;Td falls expo-
nentially with successive rounds]. If the moving average
Sst ;Td of an agent falls below the mutation threshold, his
strategy(i.e., its gene value) is modified. The new gene value
is chosen uniformly within the interval[0, 1], and the mov-
ing average is set to zero. After mutation, the agent enters a
“trial period” of T rounds before considering mutating again.
The mutation thresholdD characterizes the “patience” of an
agent. The smaller the value ofD the more tolerant(willing
to suffer some local losses without modifying his strategy) is
the agent. The value of the parameterT is a measure of the
agent’s level of adaptiveness, his response time to temporal
changes in the state of the system. The smaller the value of
T, the faster is the agent’s response to any deterioration in his
performance.

Figure 1 displays the long-time averaged gene distribution
Pspd of the agents for a fixed response time. We find three
qualitatively different populations, depending on the precise
value of the mutation thresholdD. For D,Dc

s1d (this corre-
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sponds to a population of “patient” agents, ones who are
willing to suffer some temporary losses without changing
their strategies) the population tends to form aW-shaped
distribution(the precise value ofDc

s1d depends on the value of
the response timeT). Remarkably, we find that this
W-shaped strategy distribution is dynamically metastable.
One observes that from time to time the system undergoes a
short and abrupt change into an inverse-U-shaped distribu-
tion (which quickly returns to aW-shaped distribution). On
the other hand, forD.Dc

s2d (“nervous” agents who hurry to
change their strategies due to even small local losses) the
population tends to crowd aroundp= 1

2, forming a (stable)
inverse-U-shaped gene distribution. This corresponds to
“confused” and “indecisive” agents(agents that prefer a
coin-tossing strategy). There is also an intermediate phase
(for Dc

s1d,D,Dc
s2d), in which Pspd has aU shape with two

symmetric peaks atp=0 andp=1—the population tends to
self-segregate(this corresponds to always or never following
what happened last time). To flourish in such a population,
an agent should behave in anextremeway.

The (scaled) efficiency of the system is defined as the
number of agents in the minority room, divided by the maxi-
mal possible size of the minority group,sN−1d /2. Figure 2
displays the system’s efficiency as a function of the mutation
thresholdD (and for various different values of the response
time T). We also display the efficiency for agents guessing
randomly between room 0 and room 1, and for a uniform
distribution of agents. There is a range of mutation thresh-
olds D for which the efficiency of the system isbetter than
the random case. Thus, the agents cooperateindirectly to
achieve an optimum utilization of the system’s resources.
However, there is also a range ofD values for which the
efficiency of the system is remarkablylower than that ob-
tained for agents choosing via independent coin tosses. Thus,
considering the efficiency of the system as a whole, the
agents would be better off not adapting their strategies be-

cause they are doingworsethan just guessing at random.
Figure 3 displays the system’s efficiency as a function of

the response timeT (and for various different values of the
mutation thresholdD). Note that the system’s global effi-
ciency is a monotonically increasing function of the response
time for intermediate values of the mutation threshold. How-
ever, for systems composed of nervous agents(largeD val-
ues), and for systems composed of patient members(very
small D values), the utilization of the system’s resources is
optimal for intermediate response times.

Next, we relax the condition that all members have the
same(common) response time. We consider a population of

FIG. 1. The strategy distributionPspd for different values of the
mutation threshold. The results are forN=10 001 agents and a fixed
response time ofT=25. Each point represents an average value over
ten runs and 20 000 time steps per run.

FIG. 2. The efficiency of the system as a function of the muta-
tion thresholdD. Horizontal lines represent the efficiency for uni-
form Pspd distribution (dashed) and a coin-tossing situation(dash-
dotted). Initially, there is a uniform distribution of the strategies.
The results are forN=10 001 agents. Each point represents an av-
erage value over ten runs and 20 000 time steps per run.

FIG. 3. The efficiency of the system as a function of the(com-
mon) response timeT. Horizontal lines represent the efficiency for
uniform Pspd distribution (dashed) and a coin-tossing situation
(dash-dotted). Initially, there is a uniform distribution of the strate-
gies. The results are forN=10 001 agents. Each point represents an
average value over ten runs and 20 000 time steps per run.
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competing and evolving agents in which each individual is
free to adopt a personal response time in a range 1øTi
øTmax. The new response time of an evolving agent(one
whose moving average has fallen belowD) is chosen uni-
formly within the range 1øTi øTmax. Figure 4 displays the
system’s efficiency as a function of the mutation threshold
(which is still common to all members of the population).
For comparison, we also display the efficiency of an homo-
geneous population in which all agents have the same re-
sponse time. One finds that allowing each agent to choose his
own personal response time mayimprove the global effi-
ciency of the system. Note, however, that for intermediate
values of the mutation threshold, this freedom(to choose a
personal response time) may cause a decrease in the system’s
global efficiency.

Finally, we consider the case of a free society(market) in
which each member is allowed to choose both his personal
response time and his mutation threshold as well. The new
response time and mutation threshold of an evolving agent
(one whose moving average has fallen below his personal
mutation threshold) are chosen uniformly. Figure 5 displays
the winning probability of an agent in such a population as a
function of his personal mutation threshold. We find that
agents with small(negative) values of the mutation threshold
D perform best. These are “patient” agents who are willing
to suffer some temporary losses without modifying their
strategy.

In Fig. 6 we display the winning probability of an agent as
a function of his personal response time. One finds that in
such free populations agents with short response times per-
form best. In fact, their winning probabilityexceeds50%. It
turns out that these agents asses their performance very of-
ten, which allows them to respond quickly and efficiently to

any change in the global state of the system. On the other
hand, the winning probability has a minimum at intermediate
values of the response time.[Note however, that in a popu-
lation composed of agents with only short response times
(Tmax=8 in Fig. 6), it is best to have the largest response time
available.]

In summary, we have explored the dynamics of complex
adaptive systems with various different values of response
times and mutation thresholds. The main results and their
implications are as follows.

(i) A population of “patient” agentssD,Dc
s1dd tends to

form a W-shaped distribution of strategies. TheW-shaped
gene distribution is intriguing in the sense that it does not
appear in adaptive systems in which agents assess their per-
formance according toall previous rounds of the evolution

FIG. 4. The efficiency of the system as a function of the(com-
mon) mutation thresholdD. Agents have a common mutation
threshold, but different response times 1øTi ø50. For comparison
we also display the efficiency of a system composed of agents with
a common response time ofT=50 (dash-dotted curve). Horizontal
lines represent the efficiency for uniformPspd distribution(dashed)
and a coin-tossing situation(dash-dotted).The results are forN
=10 001 agents. Each point represents an average value over 100
runs and 20 000 time steps per run.

FIG. 5. The winning probability of an agent as a function of his
mutation threshold. Each agent is free to adopt a personal mutation
threshold and a personal response time. The results are forN
=10 001 agents. Each point represents an average value over 100
runs and 20 000 time steps per run.

FIG. 6. The winning probability of an agent as a function of his
response time. Each agent is free to adopt both a personal mutation
threshold and a personal response time. The parameters are the
same as in Fig. 5.
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[5,15]. This is an interesting feature of the present model.
On the other hand, a population of “nervous” agents

sD.Dc
s2dd tends to cluster aroundp= 1

2 (a coin-tossing strat-
egy). Stated in a more pictorial way, confusion and indeci-
siveness take over in nervous systems.

(ii ) An evolving population achieves anoptimumutiliza-
tion of its global resources for small negative values of the
mutation thresholdD (see Fig. 2). This corresponds to a
population of patient members. For largeD values agents
tend to be indecisive(preferring a coin-tossing strategy), a
behavior which destroys any attempt to establish(indirect)
cooperation. It seems that “nervousness” prevents the agents
from achieving a reasonable utilization of their resources.

(iii ) In a free society of competing agents(in which each

member has the freedom to adopt his own response time and
mutation threshold) patient agents perform best(see Fig. 5).

(iv) The best performance is achieved by agents who have
very short response times(see Fig. 6). These agents have a
high level of adaptiveness, making it possible for them to
respond quickly and efficiently to local changes in the state
of the system. The success rate of such agents actually ex-
ceeds 50%.(Agents who have very long response times also
perform reasonably well, whereas the winning probability
drops to a minimum at intermediate values of the response
time.)
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